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We propose a method based on cluster expansion to study the truncated corre-
lations of unbounded spin systems uniformly in the boundary condition and in
a possible external field. By this method we study the spin–spin truncated corre-
lations of various systems, including the case of infinite range simply integrable
interactions, and we show how suitable boundary conditions and/or external
fields may improve the decay of the correlations.
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INTRODUCTION

In recent times a considerable effort has been spent to generalize the clas-
sical framework of the complete analiticity for bounded spin systems to
the unbounded case. This effort is motivated by the fact that, both in the
bounded and in unbounded case, it is in general difficult to prove directly
the log-Sobolev inequality, which ensures the complete analyticity, or the
existence of a spectral gap for the spin systems, while it is possible to prove
the equivalence of the existence of the spectral gap with some other prop-
erty of the systems easier to check.

The complete scenario of the bounded case, see refs. 1 and 2, has been
almost completely recovered in the unbounded case in ref. 3, which proved
that the log-Sobolev inequality and the existence of a spectral gap for
models of interacting unbounded spins equipped by a local potential
satisfying reasonable conditions and finite range interactions is equivalent



to the exponential decay of the spin–spin truncated correlation uniformly
in the boundary conditions.

In many other recent papers, see, e.g., refs. 4–8, the uniform exponen-
tial decay of the correlations has been proved with various techniques for
the same range of models.

The decay of correlations for unbounded spin systems with empty
boundary conditions is an argument studied since a long time, see, e.g.,
refs. 9–11.

A related topic is the study of the unicity of the Gibbs measure. Results
in this sense have been obtained so far using suitable generalizations of the
Dobrushin theory, see refs. 12 and 13 and, more recently, ref. 14, where the
decay of the correlations is also treated. In refs. 13 and 14, however, only
the finite range case is studied. Note, moreover, that in refs. 4–8 the
problem is to find the behaviour of the truncated correlation independently
on the boundary conditions, i.e., also when the boundary does not satisfies
the conditions needed to prove unicity.

In this paper we propose a method to study the decay of the spin–spin
correlations uniformly in the boundary conditions based on cluster expan-
sion techniques. Such method is inspired by ref. 9.

With our technique we are able to prove all the known results for the
finite range case, including the equivalence of the exponential decay of the
spin–spin truncated correlation and the analogous decay of the truncated
correlations between measurable functions. Moreover we can prove some
additional generalizations.

In particular we prove the exponential decay of the correlations uni-
formly in the boundary conditions when the interaction in the system is
infinite range with exponential decay. Then, for infinite range interactions
with summable power law, we prove that the spin–spin correlations have
the same decay as the interaction. This result was not known in literature
even for empty boundary conditions (see reference above). In this case one
expect from a dynamic point of view a slow convergence to the equilib-
rium. Very recently an analogous result has been proved with different
techniques in ref. 15 for bounded spin models with ferromagnetic inter-
actions. Note that with our technique we do not need to impose any con-
straint on the sign of the interaction, and hence we are able to prove the
decay of the correlation even, e.g., for disordered systems with summable
interaction.

Finally we show how large boundary conditions and/or the presence
of an external field may improve the decay of the correlations. As a
byproduct of this we are able to control the decay of the correlations and
the convergence of the free energy at low temperature for systems with
boundary conditions and constant external field suitably chosen.

454 Procacci and Scoppola



The main idea behind our results is the following. Let us call m(fx) the
product measure of the system and J the strenght of the interaction
measured in the L1 norm

sup
x ¥ Zd

C
y ] x

|Jxy |=J <+. (0.1)

The quantites that one has to control in order to have convergence of
the cluster expansion are the following moments of the modified product
measure

Ca(J)=F |fx |a eJf
2
x dmx(fx) (0.2)

where a ¥ N. In order to have convergent expansions one has to prove that

Ca(J) [ a! AaC(J) (0.3)

where the constants A and C(J) are independent on the boundary condi-
tions, and to impose that the quantity JC(J) is small.

It is clear that when a dependence on the boundary conditions is
included in the product measure mx, there is no hope to find a uniform
bound of the form (0.3). Nevertheless one can introduce, simply shifting
the fields, a different model in which the field is substituted by its deviation
with respect to some configuration which minimizes the Hamiltonian. In
this way the free energy is not uniformly bounded in the boundary condi-
tions, but this divergence appears only in an overall constant factor, and
will not affect the truncated correlations.

On the other side the new product measure that one obtains for the
shifted fields is now under control in the sense of (0.3) uniformly in the
boundary conditions.

Similar ideas have been used before in different context (see, e.g.,
refs. 16 and 17). Since the properties of the resulting shifted measure are
quite crucial in our work, we describe it in some detail in Section 2 and we
study its properties in Section 3.

The rest of the paper is devoted to the computation via cluster expan-
sion of the spin–spin correlations exploiting (0.3).

This is in some sense quite standard (see the references above),
however our careful treatment of the convergence of the series, using a
representation of the spin spin correlation borrowed from Simon (18) and the
Battle–Brydges–Federbush trees technique, allows us to obtain the above
mentioned decay of the correlations with the same power as the interaction.
The representation of the spin–spin correlation is presented in Section 4.
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In Section 5 we state our main general result and we add to it some
useful remarks and exemples. The proof of our theorem is in Section 6.

1. THE ORIGINAL MODEL

Let us denote with Zd the simple cubic unit lattice in d dimensions
equipped with the usual Euclidean distance.

Suppose that in each site x ¥ Zd is defined a variable fx, called spin or
field, which takes values in R. A configuration f̄ is a function f̄: ZdQ R.
Let L … Zd. We call f̄L the restriction of f̄ to L. We also denote Lc —
Zd0L.

We consider the lattice model described by the Gibbs measure

mwL( · )=
1

Z(L, w)
F D
x ¥ L

dfx e−H(f̄L , w)( · ) (1.1)

where dfx is the Lebesgue measure in R and the partition function Z(L, w)
is defined by

Z(L, w)=F D
x ¥ L

dfx e−H(f̄L , w) (1.2)

The Hamiltonian of the system is

H(f̄L, w)=C
x ¥ L

U(fx)− C
{x, y} 5 L ]”

Jxyfxfy+C
x ¥ L

hxfx

=C
x ¥ L

[U(fx)−fxwx]− C
{x, y} … L

Jxyfxfy (1.3)

U(x) is an even polynomial of degree 2k, k > 1, of the form

U(x)=x2k+C
k−1

i=0
u2ix2i (1.4)

with u2i ¥ R; as stated in the introduction, the pair potential Jxy is such that

sup
x ¥ Zd

C
y ] x

|Jxy |=J <+. (1.5)

hx ¥ R represents the external field, and in the last line of (1.3) we defined

wx=−hx+ C
y ¥ Lc

Jxyfy (1.6)
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The boundary fields fy with y ¥ Lc must be chosen in such way that
;y ¥ Lc Jxyfy is finite for all x.

In this paper we study the 2-points truncated correlation mwL(fx, fy),
defined by

mwL(fx, fy)=m
w
L(fxfy)−m

w
L(fx) m

w
L(fy) (1.7)

As stated in the introduction, in the recent literature (see, e.g., refs. 3,
4, 6–8 for similar results), in the case of couplings Jxy small enough and
finite range, the following bound has been proved

|mwL(fx, fy)| [ Ce−c |x−y| (1.8)

with C and c positive constants independent on L and w. Moreover in ref. 3
it is proven the equivalence between (1.8), the log-Sobolev inequality and
the existence of the spectral gap.

Here we propose an alternative technique to obtain the bound (1.8)
which allows us to treat also the case of infinite range interactions, and, for
suitable boundary conditions and/or external field the case of strong
interactions.

2. THE SHIFTED MODEL

We write the Hamiltonian as in the last line of (1.3)

H=C
x ¥ L

[U(fx)−fxwx]− C
{x, y} … L

Jxyfxfy (2.1)

where wx is defined in (1.6).
Then we perform a change of variables defining new fields kx which

are simply a translation of fields fx, namely

fx=kx+zx (2.2)

The translation vector z̄=1x ¥ L zx is chosen in such a way that it mini-
mizes the Hamiltonian (2.1). Hence we define z̄ as a solution of the follow-
ing set of equations

UŒ(zx)−wx− C
y ¥ L: y ] x

Jxyzy=0 -x ¥ L (2.3)

Note that the system (2.3) always admits real solutions, since H is a poly-
nomial of degree 2k in |L|-variables bounded below.
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The Hamiltonian (2.1) may now be rewritten defining

qx(kx)=U(kx+zx)−U(zx)−UŒ(zx) kx (2.4)

as

H=C
x ¥ L

qx(kx)− C
{x, y} … L

Jxykxky+C(z̄) — H̄(k̄)+C(z̄) (2.5)

where by (2.4) it is easy to see that qx(kx) does not contain terms linear in
the field for any x, and where

C(z̄)=C
x ¥ L

(U(zx)−zxwx)− C
{x, y} … L

Jxyzxzy

can be bounded by a suitable constant of the form |C(z̄)| [ |L| C, where C
depends in general from boundary conditions and the external magnetic
field, and may diverge with them. The shift constants zx in general depends
on the boundary spin configurations and/or on the external magnetic field,
and they can be arbitrarily large for any x (even inside the bulk) if the
boundary fields and/or the external magnetic field are large enough. In
general the choice of the configuration z̄ is not even unique. However the
basic feature of the shifted Hamiltonian, i.e., the absence of linear terms in
the field, (see next section for more details) is preserved for every choice of
the local minimizer, and this is the essential feature to control uniformly
the quantites of the form (0.2) in the sense of (0.3). An optimal choice of z̄
gives the optimal condition on the smallness of the interaction Jxy needed
to have decay of correlations.

We define also the number

z=inf
x ¥ L

|zx | (2.6.)

and the constant z may be taken as a reasonable parameter to measure the
influence of the boundary conditions and the external field on the system.

The partition function can be rewritten

Z(L, w)=e−C(z̄) F D
x ¥ L

dkx e−H̄(k̄L , w) (2.7)

Defining the local probability measure

dnw(kx)=
e−qx(kx ) dkx

>R e−qx(kx ) dkx
(2.8)
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and defining also

m̃wL( · )=
> <x ¥ L dnw(kx) e;{x, y} … L Jxykxky( · )
> <x ¥ L dnw(kx) e;{x, y} … L Jxykxky

(2.9)

it is easy to check that

Lemma 1.

mwL(fx, fy)=m̃
w
L(kx, ky) (2.10)

Moreover the partition function (1.2) is written as

Z(L, w)=Cw(L) Z̃(L, w) (2.11)

with

Z̃(L, w)=F D
x ¥ L

dnw(kx) eC {x, y} … L Jxykxky (2.12)

Cw(L)=e−C(z̄) D
x ¥ L

F
R
e−qx(kx ) dkx (2.13)

3. PROPERTIES OF THE LOCAL MEASURE nw

In order to bound by cluster expansion techniques the quantity
log Z̃(L, w) and the truncated correlations we need to control uniformly in
z and hence in w the quantities

Ca(J)=F |kx |a eJk
2
x dnw(kx) (3.1)

where a ¥ N and J is the constant appearing in (1.5).
Inserting (1.4) in (2.4), we first write explicitly the function qx(kx) as

qx(kx)=Pk(kx)+C
k−1

i=1
u2iPi(kx) (3.2)

where

Pi(kx)=(kx+zx)2i−z
2i
x −2iz2i−1x kx=C

2i

j=2

12i
j
2 z2i−jx k jx (3.3)
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Hence qx(kx) is a polynomial of degree 2k in kx without constant and
linear term; namely it has the structure

qx(kx)=C
2k

i=2
Ci(zx) k

i
x (3.4)

where Ci(zx) are also polynomials in zx and C2k(zx)=1.
We now state the following lemma

Lemma 2. For any given U(x) of the form (1.4) there exists a posi-
tive constant BU, and two positive functions CU(J) and FU(J) satisfying,
for some constants C, F

1 [ CU(J) [ CJ
1

2k−2 1 [ FU(J) [ FJ 2k

such that

(i) For |zx | > CU(J)

qx(kx)−Jk2x \
1
4 z

2k−2
x k2x (3.5)

qx(kx) [ BUz
2k−2
x k2x whenever |kx | [ |zx | (3.6)

(ii) For |zx | [ CU(J)

qx(kx)−Jk2x \
1
2k

2k
x −FU(J) (3.7)

qx(kx) [ 2k2kx +FU(J) (3.8)

The proof of Lemma 2 is given in the Appendix, together with explicit
expressions for BU, CU(J) and FU(J), see (A.11), (A.10) and (A.14). As a
simple corollary of Lemma 2, we can now state the following lemma, which
states the control of the form of (0.3) of the quantites Ca(J) defined in
introduction.

Lemma 3. For any a ¥ N and for all x

F |kx |a eJk
2
x dnw(kx) [ C 1

a

2
2 2 a2C(J, z) (3.9)

with

C(J, z)=˛ Ck
za(k−1)

if z > CU(J)

Ck e2FU(J) if z [ CU(J)
(3.10)

where Ck and A are constants independent on J and z.
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Note that, for fixed z, and for J large, C(J, z) increases as CJ2k for
some C greater than 1, while limzQ. C(J, z)=0 for any fixed J.

Proof. Consider first |zx | [ CU(J). Recalling definition (2.8) and
using (3.7) and (3.8) we get

F |kx |a eJk
2
x dnw(kx)=

>R |kx |a e−{qx(kx )−Jk
2
x} dkx

>R e−qx(kx ) dkx
[ e2FU(J)

>R |kx |a e−k
2k
x /2 dkx

>R e−2k
2k
x dkx

[ e2FU(J)2
a+2
2k C 1a+1

2k
25C 1 1

2k
26−1

[ C 1a
2
2 Aa2 C1, k e2FU(J) (3.11)

Then we consider the case |zx | > CU(J). Using that CU(J) \ 1 and BU \ 1
(see (A.11)), we have by (3.6)

F dkx e−qx(kx ) \ 2 F
|zx |

0
dkx e−BUz

2k−2
x k

2
x \ 2

1
|zx |k−1

F
1

0
e−t

2
dt \

1
|zx |k−1

and by (3.5)

F dkx e−qx(kx ) |kx |a eJk
2
x [ F dkx e−

k
2 z

2k−2
x k

2
x |kx |a

=C 1a+1
2
252

k
6 (a+1)/2 1

|zx | (1+a)(k−1)

thus we obtain

F |kx |a eJk
2
x dnw(kx) [ C 1

a+1
2
252

k
6 (a+1)/2 1

|zx |a(k−1)
[ C 1a

2
2 C2, k
|zx |a(k−1)

(3.12)

Collecting (3.11) and (3.12) and putting Ck=max {C1, k, C2, k}, we get

F |kx |a eJk
2
x dnw(kx) [ C 1

a

2
2 A a

2C(J, |zx |)
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Recalling that z=infx |zx | and observing that C(J, |zx |) is a decreasing
function of |zx | for any fixed J we have that C(J, |zx |) [ C(J, z) for all x
and J, which completes the proof.

4. POLYMER EXPANSION

Let us first recall some basic definitions about graphs in finite sets. In
general, if A is any finite set, we denote by |A| the number of elements of A.
Given a finite set A, we define a graph g in A as a collection {l1, l2,..., lm}
of distinct pairs of A, i.e., li={xi, yi} … R with xi ] yi. The pairs
l1, l2,..., lm are called links of the graph g. We denote by |g| the number of
links in g. Given two graphs g and f we say that f … g if each link of f is
also a link of g.

A graph g={l1, l2,..., lm} in A is connected if for any pair B, C of
subsets of A such that B 2 C=A and B 5 C=”, there is a li ¥ g such that
li 5 B ]” and li 5 C ]”. If g is connected, then necessarely 1m

i=1 li
=A and |A|−1 [ m [ |A|(|A|−1)/2.

If g is a graph on A, then the elements of A are called vertices of g. We
denote by GA the set of all connected graphs in A.

A tree graph y on {1,..., n} is a connected graph such that |y|=n−1.
The set of all the tree graph over {1,..., n} will be denoted by Tn. The
number of incidence di of the vertex i of a tree graph y ¥ Tn is the number of
links l ¥ y such that i ¥ l. We recall that for any y and for any i ¥ y, the
incidence numbers have the following properties: 1 [ di [ n−1 and ;n

i=1 di
=2n−2.

We now rewrite the ‘‘shifted’’ partition function Z̃(L, w) and its
logarithm (via Mayer expansion on the factor e+;{x, y} … L Jxykxky) in term of
an hard core polymer gas. As it is well known we get

Z̃(L, w)=1+C
n \ 1

1
n!

C
R1 ,..., Rn … L

Ri 5 Rj=” |Ri | \ 2

r(R1) · · ·r(Rn) (4.1)

where R1,..., Rn … L is a collection of subsets of L, called polymers, with
activities r(R) given by

r(R)=F dnw(kR) C
g ¥ GR

D
{x, y} … L

(eJxykxky−1) (4.2)

where > dnw(kR)=> <x ¥ R dnw(kx) and ;g ¥ GR is the sum over the con-
nected graphs on the set R.
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One has also

log Z̃(L, w)=C
n \ 1

1
n!

C
R1 ,..., Rn … L
|Ri | \ 2

fT(R1,..., Rn) r(R1) · · ·r(Rn) (4.3)

with

fT(R1,..., Rn)=3
1 if n=1

;f ¥ Gn
f … g(R1 ,..., Rn )

(−1) |f| if n \ 2 and g(R1,..., Rn) ¥ Gn
(4.4)

where we denote by Gn the set of the connected graphs on {1,..., n} and by
g(R1,..., Rn) the graph in {1, 2,..., n} which has the link {i, j} if and only if
Ri 5 Rj ]”.

Note that, if g(R1,..., Rn) is not connected, then fT(R1,..., Rn)=0,
since the sum on f in (4.4) runs over connected subgraphs of g(R1,..., Rn).

The convergence of the expansion (4.3) is an argument widely studied
by cluster expansion techniques. We shall see in Section 6 that the small-
ness of the quantity JC(J, z), where C(J, z) is the constant appearing in
the estimate (3.9), is the basic tool needed to obtain such convergence.
However, since such convergence is a byproduct of the convergence of the
spin–spin truncated correlations (1.7), we give here their explicit expression
in term of polymers, (18) and we treat directly the problem of the conver-
gence of the correlations. This is achieved just recalling Lemma 1 and
noting that the following identity holds

m̃wL(kx1 , kx2 )=
“
k

“a1“a2
log Z̃(L, w, a1, a2)|a=0 (4.5)

where

Z̃(L, w, a1, a2)=F dnw(kL) e+; {x, y} … L Jxykxky(1+a1kx1 )(1+a2kx2 )

It is now easy to expand Z̃(L, w, a1, a2) in terms of polymers. For any
R … L let us denote by IR the subset (possibly empty) of {1, 2} such that
i ¥ IR iff xi ¥ R. We get

Z̃(L, w, a1, a2)=1+C
n \ 1

1
n!

C
R1 ,..., Rn … L

Ri 5 Rj=” |Ri | \ 1

r̃(R1, a) · · · r̃(Rn, a) (4.6)
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where

r̃(R, a)=˛
> dnw(kR)< i ¥ IR (1+aikxi );g ¥ GR <{x, y} ¥ g (e

Jxykxky−1)

for |R| \ 2

> dnw(kR)< i ¥ IR aikxi for IR ]”, |R|=1

0 for IR=”, |R|=1

Note that also one-body polymers R={x} can contribute to the partition
function (4.6), but only if x=xi for some i ¥ {1, 2}.

Now taking the log of (4.6) and observing, by (4.5), that only the
terms proportional to a1a2 will give a non vanishing contribution to the
2-points truncated correlation functions, we get

mwL(fx1 , fx2 )=m̃
w
L(kx1 , kx2 )

=C
n \ 1

1
n!

C
n

i1 , i2=1
C

R1 ,..., Rn … L, |Rj | \ 2
Ri1 ¦ x1Ri2 ¦ x2

fT(R1,..., Rn) r̃(R1) · · · r̃(Rn)
(4.7)

where

r̃(Ri)=F dnw(kRi )(k
b
1
i
x1+b

1
i g(x1))(k

b
2
i
x2+b

2
i g(x2)) C

g ¥ GRi

D
{x, y} ¥ g

(eJxykxky−1)
(4.8)

with

b ji=˛
0 if i ] ij
1 if i=ij

(4.9)

and

g(x)=F dnw(kx) kx (4.10)

Note that the one-body polymers are absorbed in the activity of the many
body polymers (in the terms proportional to g), due to the fact that
R1,..., Rn must be connected and therefore each 1-body polymer (if any) is
always contained in at least one many-body polymer. Remark also that, for
any x ¥ L we have

|g(x)| [ C 11
2
2 C(0, z) (4.11)
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5. THE DECAY OF THE SPIN–SPIN CORRELATIONS

In this section we state the main result of the paper and we make some
remarks about its applicability.

Theorem. The spin–spin truncated correlation written as the series
in the r.h.s. of (4.7) converges absolutely, uniformly in the configuration w
of the wx’s defined in (1.6) and L, for JC(J, z) sufficiently small, where
C(J, z) is the constant appearing in (3.9). Moreover it satisfies the follow-
ing bounds.

(i) If Jxy is finite range, i.e., if there exists R such that Jxy=0 if
|x−y| >R, then

|mwL(fx1 , fx2 )| [ Ce−m(J, z) |x1 −x2 | (5.1)

where C is a constant uniform in z and L, and the ‘‘mass’’ m(J, z) which
controls the exponential decay is bounded from below uniformly in z and L
(i.e., m(J, z) \ m(J) for all z, L); moreover for small J m(J, z)=
O( 1R |log J|) and for large z m(J, z)=O( 1R log z), i.e., the decay is stronger
if the temperature J−1 or the external boundary parameter z are higher.

(ii) If Jxy [ Be−c |x−y|

|mwL(fx1 , fx2 )| [ CŒe−
c

2 |x1 −x2 | (5.2)

where CŒ is a constant uniform in z and L

(iii) If C1J
|x−y|a [ |Jxy | [

C2J
|x−y|a with a > d

C −1J
|x1−x2 |a

[ |mwL(fx1 , fx2 )| [
C'2J

|x1−x2 |a
(5.3)

where C −1, C
'

2 are constants uniform in z and L.

Remarks.

(1) The result (i) cover the analogous result found in recent literature
(see, e.g., refs. 3–8, 19). With our techniques however we need, to control
the convergence of the expansions, the smallness of the quantity JC(J, z).
Since C(J, z) is small for any J when |z| is large enough (see the first line of
(3.10)) our theorem holds also for large couplings Jxy and z large depending
on J. This allows us to cover some particular cases that can be meaningful
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from a physical point of view and are not treated in the former related
works. For example it is easy to see that when hx has a definite sign on all
the lattice sites and is large enough, and the boundary conditions have the
same sign of hx then |z| is large.

From a physical point of view this example is quite clear: even when
the system is expected to have more than one phase, suitable external fields
may force it in one phase. The same result may be obtained by suitable
boundary conditions if they increase very rapidly with the volume. Note
however that, in order to be more quantitative, the conditions on h and/or
on the boundary condition have to take in account the details of the local
interaction U(fx). As an example let us consider the case U(x)=x4, hx=h
and Jxy > 0 with J large. It is clear that, at least in the bulk, zx % z for all x,
where z is the solution of h+Jz=4z3. Then |z| is large when |h| is large
enough.

(2) The results (ii) and (iii) are not contained, as far as we know, in
the previous literature. Recently Spohn and Zwerger (20) proved a result
similar to (iii) in the particular case of the one-dimensional O(N) spin
model. They prove such result in a very different context, assuming a decay
of the correlation and proving then that the decay is the same of the
interaction. On the other hand they are able to obtain such result for any
temperature above the critical one.

In case (ii) the equivalence between (5.2) and the log-Sobolev inequal-
ity is not yet proved. In case (iii) one should expect a slow decay of the
dynamics.

(3) It is easy to prove in our framework the equivalence between the
decay of the spin–spin correlations and the decay of the correlations in the
form suggested by the Dobrushin–Shlosman condition in ref. 21 (see, e.g.,
refs. 3 and 7). In particular we are able to prove that

|mwL(f, g)| [ C |||f||| |||g||| h(d(Sf, Sg)) (5.4)

where Su is the support of u,

|||u||| — C
x ¥ Su

sup
f

: “
“fx

u(f) :

d(Sf, Sg) is the minimal distance between the support of f, g and
h(r)=e−m(J, z) r in the case (i), h(r)=e−

c

2 r in the case (ii) and h(r)=r−a in
the case (iii). This equivalence can be proved as follows: one has easily

mwL(f, g)=m̃
w
L(f(kSf+zSf )−f(zSf ), g(kSg+zSg )−g(zSg ))
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By the same argument leading to (4.7) one can obtain

mwL(f, g)=C
n \ 1

1
n!

C
n

i1 , i2=1
C

R1 ,...,Rn … L, |Rj | \ 2
Ri1 ‡ Sf , Ri2 ‡ Sg

fT(R1,..., Rn) r̃(R1) · · · r̃(Rn)

where

r̃(Ri)=F dnw(kRi )[b
i
1[f(kSf+zSf )−f(zSf )] b

i
2[g(kSg+zSg )−g(zSg )]]

C
RŒ ı Ri
RŒ ‡ Ri0Si

C
g ¥ GRŒ

D
{x, y} ¥ g

(eJxykxky−1)

=F dnw(kRi )1b i1 C
x ¥ Sf

kx
“

“fx
f(f):

f=z+k̃x

21b i2 C
y ¥ Sg

ky
“

“fy
g(f):

f=z+k̃y

2

C
RŒ ı Ri
RŒ ‡ Ri0Si

C
g ¥ GRŒ

D
{x, y} ¥ g

(eJxykxky−1)

where: zx [ k̃x [ zx+kx, Si=” if i ] i1, i2; if i1 ] i2 then Si1=Sf Si2=Sg;
if i1=i2=i then Si=Sf 2 Sg.

Then extracting the sup of the f and g derivatives and proceeding as
in the proof of (5.1) one obtains (5.4).

(4) One can prove very easily the following

(iv) The free energy of the system at finite volume can be written as

F(L, w)=|L|−1 [Cw(L)+log Z̃(L, w)] (5.5)

where Cw(L) is defined by (2.13) and |L|−1 Cw(L) is uniform in the volume
(but it diverges as zQ.) while |L|−1 log Z̃(L, w) is the series in the r.h.s. of
(4.3) which is analytic in JC(J, z) in a circle around the origin with radius
independent on |L|.

Note that (iv) can be stated in terms of analyticity in J, since for
bounded J, say J < 1, C(J, z) < C where C depends only on the form of U,
and this gives an analyticity circle for J. See Appendix for more details.

(5) Our local interaction U(fx) is polynomial. One may try to
generalize the theorem to more general U growing sufficiently fast to infi-
nity. Althought it is clear that the shifted measure can be estimated from
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above and below finding some analogous of Lemma 2, we did not find
easily the way to have for a larger class of interactions a detailed control of
the constants involved in the estimates. The regularizing effect of the large
z should be preserved for potential U growing to infinity faster than
quadratically.

6. PROOF OF THE THEOREM

Since the result (iii) is the more difficult, we discuss it in details. The
proofs of (i), (ii) and (iv) can be obtained repeating the argument leading to
(iii), or even in a simpler way. In the end of the section we present the
sketchy argument giving the explicit behaviour of the rate of the exponen-
tial decay in the case (i) claimed in the theorem.

Proof of (iii). We will denote throughout the proof below with O(1)
any generic constant which depends only on a and d. The constant may
change from line to line.

We observe first that the function r̃(R) in (4.7), which specifies the
activity of a polymer (4.8) depends on the polymer R also via the index
i ¥ IR, implying that in (4.7) one has to perform a sum over the two special
indices i1 and i2 which are selected by the operator {“2/“a1 “a2}|a1 , a2=0.
Hence we rewrite the sum (4.7) in the following more convenient way

mwL(fx1 , fx2 )=A1(x1, x2)+A2(x1, x2) (6.1)

where

A1(x1, x2)=C
n \ 2

1
(n−2)!

C
R1 ¦ x1

C
R2 ¦ x2

C
R3 ,..., Rn … L,
|Rj | \ 2

fT(R1,..., Rn) r̃1(R1) r̃2(R2) r(R3) · · ·r(Rn)
(6.2)

and

A2(x1, x2)=C
n \ 1

1
(n−1)!

C
R1 ‡ {x1 , x2}

× C
R2 ,..., Rn … L,
|Rj | \ 2

fT(R1,..., Rn) r̃(R12) r(R2) · · ·r(Rn) (6.3)
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where r(R) is defined in (4.2), while

r̃1(R)=F dnw(kR)(kx1+g(x1)) C
g ¥ GR

D
{x, y} ¥ g

(eJxykxky−1) (6.4)

r̃2(R)=F dnw(kR)(kx2+g(x2)) C
g ¥ GR

D
{x, y} ¥ g

(eJxykxky−1) (6.5)

r̃12(R)=F dnw(kR)(kx1+g(x1))(kx2+g(x2)) C
g ¥ GR

D
{x, y} ¥ g

(eJxykxky−1)
(6.6)

In what follows we will denote with r̃(R) an activity that can be r̃i(R),
r̃12(R) or r(R)

We will need the following lemma

Lemma 4. If JC(J, z) is sufficiently small, it exists a positive func-
tion e(J, z) such that, for any z ¥ L, zŒ ¥ L with z ] zŒ

C
R: |R| \ 2
z, zŒ ¥ R

|r̃(R)| e |R| [
e(J, z)
|z−zŒ|a

(6.7)

with

e(J, z)=O(1) C2(J, z) J

Note that from Lemma 4 it is immediate to obtain

Corollary 5.

sup
x ¥ Zd

C
R: x ¥ R

|r̃(R)| e |R| [ O(1) e(J, z) (6.8)

The basic tool to prove Lemma 4 and Corollary 5 is the Brydges–
Battle–Federbush tree graph inequality, namely the following lemma.

Lemma 6. Let Vij, 1 [ i < j [ n be a set of real numbers and Vii
(i=1, 2,..., n) be positive numbers such that, for any subset S … {1, 2,..., n}

C
i ¥ S

Vii+ C
{i, j} ¥ S

Vij \ 0
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Then

: C
g ¥ Gn

D
{i, j} ¥ g

(e−Vij−1) : [ eC n
i=1 Vii C

y ¥ Tn

D
{i, j} ¥ y

|Vij | (6.9)

We recall that Gn denotes the set of the connected graphs on
{1, 2,..., n} and Tn denotes the set of the tree graphs on {1, 2,..., n}. For the
proof of this lemma see, e.g., refs. 22–24.

Proof of Lemma 4. For simplicity we bound |r̃(R)| in the case in
which R 5 {x1, x2}=” so that r̃=r as defined in (4.2). The other cases
are treated analogously. By (6.9), and observing that for any R,

C
x, y ¥ R

Jxykxky [ C
x ¥ R

Jk2x

Lemma 6 can be used with Vij — −Jxykxky and Vii — Jk2x, obtaining

|r(R)| [ 1D
x ¥ R

F dnw(kx)2 eJ ;x ¥ R k
2
x C
y ¥ TR

D
{x, y} ¥ g

|kx | |ky | |Jxy | (6.10)

then

C
R … L: |R| \ 2
z, zŒ ¥ R

|r(R)| e |R|

[ C
n \ 3

en C
R … L, z, zŒ ¥ R

|R|=n

|r(R)|

[ C
n \ 2

en

(n−2)!
C

x3 ,..., xn
xi ¥ L, xi ] xj , -i, j
x1=z, x2=zŒ

F D
n

i=1
dnw(kxi ) e

Jk2xi C
y ¥ Tn

D
{i, j} ¥ y

|kxi | |kxj | |Jxixj |

[ C
n \ 2

en

(n−2)!
C

x3 ,..., xn
xi ¥ L, xi ] xj , -i, j
x1=z, x2=zŒ

C
y ¥ Tn

F D
n

i=1
dnw(kxi ) e

Jk2xi |kxi |
di D
{i, j} ¥ y

|Jxixj |

[ C
n \ 2

[AeC(J, z)]n

(n−2)!
C
y ¥ Tn

3D
n

i=1
C 1di

2
2 C

x3 ,..., xn
xi ¥ L, xi ] xj , -i, j
x1=z, x2=zŒ

D
{i, j} ¥ y

|Jxixj |4
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Recall that, for a fixed y ¥ Tn, di is the incidence number of the vertex i, i.e.,
di is the number of links {j, k} ¥ y such that j=i or k=i. Note also that
in the last line above we have used the bound (3.9) and the property
;n
i=1 di=2n−2. We now use the fact that for any y in {1, 2,..., n}, there is

a unique path ȳ in y which joins vertex 1 to vertex 2. Let us call Iy —
{1, i1,..., ik, 2} the subset of {1, 2, 3,..., n} whose elements are the vertices
of the path ȳ. Note that this set is ordered, i.e., y establishes uniquely the
order of this set in the sense that the sub-tree ȳ is given explicitly by the set
of bonds ȳ={1, i1}, {i1, i2}, {i2, i3},..., {ik−1, ik}{ik, 2}.

Then one can easily check that

C
x3 ,..., xn

xi ¥ L, xi ] xj , -i, j
x1=z, x2=zŒ

D
{i, j} ¥ y

Jxixj

[ Jd1 −1Jd2 −1 D
i ¨ Iy

Jdi −1 D
i ¥ Iy
i ] 1, 2

Jdi −2 C
xi1 ,..., xik

xij ¥ L, xij ] xis , -i, j

Jx1xi1 Jxi1 xi2 · · · Jxik x2

We have by definition that J=O(1) J0. Moreover

C
xi1 ,..., xik

xij ¥ L, xij ] xis , -i, j

Jx1xi1 Jxi1 xi2 · · · Jxik x2

=Jk0 C
xi1 ,..., xik

xij ¥ L, xij ] xis , -i, j

1
|x1−xi1 |

a

1
|xi1 −xi2 |

a · · ·
1

|xik −x2 |a

[
Jk[O(1)]k

|x1−x2 |a

where the last line follows applying iteratively the inequality

C
x̄ ¥ L
x̄ ] x, y

1
|x− x̄|a

1
|x̄−y|a

[ O(1)
1

|x−y|a

Hence, recalling that for any tree y we have ;n
i=1 (di−1)=n−1, we get

C
x3 ,..., xn

xi ¥ L, xi ] xj , -i, j
x1=z, x2=zŒ

D
{i, j} ¥ y

Jxixj [
[JO(1)]n−1

|z−zŒ|a
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Recalling now Cayley formula, i.e.,

C
y ¥ Tn

d1 ,..., dn fixed

1=
(n−2)!

<n
i=1 (di−1)!

we get

C
R … L, z, zŒ ¥ R

|r(R)| e |R|

[ C
n \ 2

[AeC(J, z)]n

(n−2)!
[JO(1)]n−1

|z−zŒ|a
C

d1+· · ·+dn=2n−2
di \ 1

3D
n

i=1
C 1di

2
2 (n−2)!
<n

i=1 (di−1)!
4

[ C
n \ 2

[4AeC(J, z)]n [JO(1)]n−1
1

|z−zŒ|a
[
O(1) C2(J, z) J

|z−zŒ|a

provided 4AeO(1) C(J, z) J < 1. This proves Lemma 4.

Upper Bound for the Correlations

From (6.1) we can write

|mwL(fx1 , fx2 )| [ |A1(x1, x2)|+|A2(x1, x2)| (6.11)

Let us thus now find an upper bound for the term |A1(x1, x2)|.

|A1(x1, x2)|

[ C
R1 , R2 : |Ri | \ 2
x1 ¥ R1 , x2 ¥ R2

|r̃1(R1)| |r̃2(R2)|

×5|fT(R1, R2)|+C
n \ 3

1
(n−2)!

C
R3 ,..., Rn … L
|Ri | \ 2

|fT(R1, R2,..., Rn) r(R3) · · ·r(Rn)|6

[ C
R1 , R2 : |Ri | \ 2
x1 ¥ R1 , x2 ¥ R2

|r̃1(R1)| |r̃2(R2)| fT(R1, R2)+C
n \ 3

1
(n−2)!

Bn(x1, x2)

where

Bn(x1, x2)

= C
R1 ,..., Rn … L

|Ri | \ 2, x1 ¥ R1 , x2 ¥ R2

|fT(R1, R2,..., Rn)| |r̃1(R1)| |r̃2(R2)| |r(R3) · · ·r(Rn)|
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Now we can reorganize the sum over the sets R1,..., Rn using the fact that
fT(R1,..., Rn) depends only on the graph g(R1,..., Rn) ¥ Gn. From the
explicit definition (4.4) of fT(R1,..., Rn) we obtain

Bn(x1, x2)= C
g ¥ Gn

: C
f ¥ Gn
… g

(−1) |f| :

× C
R1 ,..., Rn … L: |Ri | \ 2

g(R1 ,..., Rn )=g, x1 ¥ R1 , x2 ¥ R2

|r̃1(R1)| |r̃2(R2)| |r(R3) · · ·r(Rn)|
(6.12)

By the Rota formula we have

: C
f ¥ Gn
f … g

(−1) |f| : [N(g) (6.13)

where N(g) denotes the number of connected tree graphs in g. The proof
of the Rota formula above can be found, e.g., in ref. 18. See ref. 24 for a
simpler proof using the Brydges–Battle–Federbush tree graph identity. (22, 23)

We observe now that

C
g ¥ Gn

[ · ]= C
y ¥ Tn

C
g: y … g

1
N(g)

[ · ] (6.14)

Such equality can be proved as follows. First, we fix a connected tree graph
y in Tn, then we sum, for y fixed, over all connected graphs in Gn which
contain y as a subgraph. We are clearly counting too much, since for the
same connected graph g in Gn there are exactly N(g) tree graphs which are
contained in it. Thus in the double sum ;y ;g ‡ t each g will be repeated
exacly N(g) times. Whence the presence of the factor 1/N(g) to correct
this double counting.

Inserting (6.13) and (6.14) in (6.12) we obtain

Bn(x1, x2)= C
y ¥ Tn

wy(x1, x2) (6.15)

where we have defined

wy(x1, x2)= C
R1 ,..., Rn … L: |Ri | \ 2

g(R1 , R2 ,..., Rn ) ‡ y, x1 ¥ R1 , x2 ¥ R2

|r̃1(R1)| |r̃2(R2)| |r(R3) · · ·r(Rn)|
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Using now the obvious bound

C
R: R 5 RŒ ]”

[ · ] [ |RŒ| sup
x ¥ RŒ

C
R: x ¥ R

[ · ]

and calling again ȳ the subtree of y which is the unique path joining vertex
1 to vertex 2 and Iy={1, i1,..., ik, 2} the ordered set of the vertices of ȳ,
then one can easily check that

wy(x1, x2)

[ D
n

i ¨ Iy

5 sup
x ¥ Zd

C
Ri : x ¥ Ri

|Ri |di −1 |r(Ri)|6

× C
R1 , Ri1 ,..., Rik , R2

R1 5 Ri1 ]”,..., Rik 5 R2 ]”

|R1 |d1 −1 |r̃1(R1)| |R2 |d2 −1 |r̃2(R2)| D
n

i ¥ Iy
i ] 1, 2

|Ri |di −2 |r(Ri)|

[ D
n

i ¨ Iy

5 sup
x ¥ Zd

C
Ri : x ¥ Ri

(di−1)! |r(Ri)| e |Ri |6 (d1−1)! (d2−1)!

× C
R1 , Ri1 ,..., Rik , R2

R1 5 Ri1 ]”,..., Rik 5 R2 ]”

|r̃1(R1)| e |R1 | |r̃2(R2)| e |R2 | D
i ¥ Iy
i ] 1, 2

(di−2)! |r(Ri)| e |Ri |

Now observe that

C
R1 , Ri1 ,..., Rik , R2 : x1 ¥ R1 , x2 ¥ R2
R1 5 Ri1 ]”,..., Rik 5 R2 ]”

[ C
xi0 ¥ Z

d
C

xi1 ¥ Z
d
· · · C

xik ¥ Zd
C
R1

x1 , xi0 ¥ R1

C
Ri1

xi0 , xi1 ¥ Ri1

C
Ri2

xi1 , xi2 ¥ Ri2

· · · C
Rik

xik−1 , xik ¥ Rik

C
R2

xik , x2 ¥ R2

and hence recalling (6.7)

C
R1 , Ri1 ,..., Rik , R2 : x1 ¥ R1 , x2 ¥ R2
R1 5 Ri1 ]”,..., Rik 5 R2 ]”

|r̃1(R1)| e |R1 | |r̃2(R2)| e |R2 | D
i ¥ Iy

|r(Ri)| e |Ri |

[ C
xi0 ¥ Z

d
C

xi1 ¥ Zd
· · · C

xik ¥ Zd
[e(J, z)]k+2

×
1

|x1−xi0 |
a

1
|xi0 −xi1 |

a

1
|xi1 −xi2 |

a · · ·
1

|xik−1 −xik |
a

1
|xik −x2 |a

[ [e(J, z)]k+2 O(1)k+2
1

|x1−x2 |a
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Thus we obtain, using also Corollary 5 and observing that |{1,..., n}0Iy |
=n−k−2

wy(x1, x2) [ (d1−1)! (d2−1)! D
n

i ¨ Iy

5 sup
x ¥ Zd

C
Ri : x ¥ Ri

(di−1)! |r(Ri)| e |Ri |6

× D
i ¥ Iy

(di−2)! [e(J, z)]k+2 O(1)k+2
1

|x1−x2 |a

[ D
n

i=1
(di−1)! [O(1) e(J, z)]n

1
|x1−x2 |a

Summing finally over y (using once again Cayley formula) we obtain

Bn(x1, x2) [ (n−2)! [O(1) e(J, z)]n
1

|x1−x2 |a

Thus, taking C(J, z) J such small to make O(1) e(J, z) < 1, we get for
the contribution A1 to the correlations the following bound:

|A1(x1, x2)| [ C
R1 , R2 : |Ri | \ 2
x1 ¥ R1 , x2 ¥ R2

|r̃1(R1)| |r̃2(R2)| |fT(R1, R2)|

+C
n \ 3

[O(1) e(J, z)]n
1

|x1−x2 |a

[ C
x ¥ Zd

C
R1 : |R1 | \ 2
x1 , x ¥ R1

C
R2 : |R2 | \ 2
x2 , x ¥ R2

|r̃1(R1)| |r̃2(R2)|+O(1)[e(J, z)]3
1

|x1−x2 |a

[ O(1)[e(J, z)]2
1

|x1−x2 |a
+O(1)[e(J, z)]3

1
|x1−x2 |a

[ O(1)[e(J, z)]2
1

|x1−x2 |a

i.e., in conclusion, for JC(J, z) sufficiently small we can find a constant
A1 > 0 uniformly in z and L such that

|A1(x1, x2)| [
A1(JC(J, z))2

|x1−x2 |a
(6.16)
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In a similar and much easier way one can also prove an analogous bound
on |A2(x1, x2)| of the form

|A2(x1, x2)| [
A2JC(J, z)
|x1−x2 |a

(6.17)

for JC(J, z) sufficiently small and for some constant A2 > 0 uniform in z
and L. Note that |A1(x1, x2)| and |A2(x1, x2)| are small quantities and
|A1(x1, x2)| is of the order of (JC(J, z))2 while |A2(x1, x2)| is of the order of
JC(J, z).

Hence by (6.11), (6.16) and (6.17) we get

|mwL(fx1 , fx2 )| [ O(1)
JC(J, z)
|x1−x2 |a

for JC(J, z) sufficiently small.

Lower Bound for Correlations

Since we proved, by the above computations, that the correlations are
analytic in the parameter JC(J, z), it is enough to prove that the lower
order term in JC(J, z) decays as the upper bound.

Again by (6.1) we can write

|mwL(fx1 , fx2 )| \ :F dnw(kx1 ) F dnw(kx2 )(kx1+g(x1))(kx2+g(x2))

×(eJx1x2 kx1 kx2 −1) :+O((JC(J, z)2)

Moreover

:F dnw(kx1 ) F dnw(kx2 )(kx1+g(x1))(kx2+g(x2))(eJx1x2 kx1kx2 −1) :

\ |Jx1x2 | :F dnw(kx1 ) F dnw(kx2 )(kx1+g(x1)) kx1 (kx2+g(x2)) kx2 :

+O((JC(J, z)2)
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and finally

|Jx1x2 | :F dnw(kx1 ) F dnw(kx2 )(kx1+g(x1)) kx1 (kx2+g(x2)) kx2 :

\ O(1)
JC(J, z)
|x1−x2 |a

In the last line we use a trivial generalization of Lemma 3.
The proofs of (i) and (ii) can be done along the same lines of the proof

of (iii). Let us give here just a sketchy argument in order to show that the
rate of the exponential decay of correlations in the case of finite range
potential is indeed of the order log e(J, z)

R , where R is the range of the poten-
tial. Let d(R)=supx, y ¥ R |x−y|. Observe that for each term of the series
(4.7) the n-ple of polymers R1,..., Rn has to be connected, thus in particular
they must connect x1 with x2. Observe, by (4.8) that if Jxy=0 for
|x−y| \R, then r(R)=0 unless |R| > d(R)

R . Moreover it is easy to check by
using Lemma 4 that

sup
x

C
R: x ¥ R
|R| \ n

|r(R)| e |R| [ O(1) e(J, z)n

Hence, one can argue that the lower order term in e(J, z) in the series
(4.7) is

e |x1 −x2 |/R

Then for the finite range case we get

|mwL(fx1 , fx2 )| [ Ce−m(J, w) |x1 −x2 |)

with

m(J, w)=
O(1) |log[JC(J, z)]|

R

7. SOME OPEN QUESTIONS

The technique presented in this paper allowed us to find some results
about the decay of the truncated correlations. Such results seem to be in
some sense optimal, as it is shown by the lower bound of the decay of the
correlations proved in our theorem, part (iii).
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With this respect the overall constant in front of the free energy due to
the possibly bad boundary conditions and the possibly large value of the
simple expectations of the fields play actually no role.

A careful control of these two topics, which corresponds to a control
of the dependence of the zx’s on the boundary condition, may be useful in
order to prove the uniqueness of the Gibbs measure in the sense presented,
e.g., in ref. 14. With our technique it is maybe possible to prove such
unicity also in some new context, say large magnetic field and/or power
decay of the interaction. The subject is under study.

APPENDIX. PROOF OF LEMMA 2

Proof of Part (i). Let us first prove the following inequalities, valid
for all i=1, 2,..., k

Pi(kx) \ iz2i−2x k2x (A.1)

Pi(kx) [ 4 iz2i−2x k2x whenever |kx | [ |zx | (A.2)

where Pi(kx) is defined in (3.3).
(A.2) follows elementary from the expression of Pi(kx)
Concerning (A.1), putting fi(kx)=Pi(kx)− iz2i−2x k2x, we have to show

that fi(kx) \ 0 for all i=1,..., k. We find the minima and the maxima
of fi(kx). Consider just the case i > 1, since for i=1 we have trivially
f1(kx)=0, hence f1(kx) \ 0. Thus f −i(kx)=02 2i(kx+zx)2i−1−2iz2i−1x −
2iz2i−2x kx=02 (kx+zx)2i−1=z

2i−2
x (kx+zx). Hence the real solutions of

f −i(kx)=0 are kx=0, kx=−zx and kx=−2zx. Moreover for any i > 1,
we have limkx Q ı fi(kx)=+ı, and then fi(kx=0)=0 and fi(kx=−2zx)
=0 are two absolute minima for fi(kx) and hence fi(kx) \ 0.

We now prove the following inequality

Pi(kx) \
1
2k

2i
x whenever |kx | \ |zx | (A.3)

Observe first that both 1
2 k

2i
x and Pi(kx) are convex functions of kx with

a minimum in kx=0. Moreover Pi(kx=zx)=(4 i−2i−1) z2ix \ 1
2 z

2i
x and

Pi(kx=−zx)=(2i−1) z2ix \ 1
2 z

2i
x . Thus Pi(kx) \

1
2 k

2i
x for |kx | \ |zx | and for

any i=1, 2,..., k.
We can now prove first part of the lemma, i.e., (3.5).
Suppose first that |kx | [ |zx |, thus we can use (A.1) (which is valid for

any kx) and obtain

qx(kx)−Jk2x \
k
2
z2k−2x k2x+5

k
2
z2k−2x − C

k−1

i=1
4 i |u2i | z

2i−2
x −J6 k2x
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Put FU(z)=
k
2 z

2k−2−;k−1
i=1 4

i |u2i | z2i−2. Clearly, since k > 1, it exists R > 0
such that FU(z) \

1
2 z

2k−2 for all |z| \ R. Define now

C1
U=inf{R > 0: for all |z| \ R FU(z) \

1
2 z

2k−2} (A.4)

Thus for |zx | \ C1
U we have that FU(zx)−J \ 1

2 z
2k−2
x −J. If we now put

C1
U(J)=˛C

1
U if J [ 1

2C
2k−2
U

2k−2
`2J if J > 1

2C
2k−2
U

(A.5)

we obtain that FU(zx)−J \ 0 for all |zx | \ C1
U(J), or in other words

qx(kx)−Jk2x \
k
2
z2k−2x k2x whenever kx ¥ (−|zx |,+|zx |) and |zx | \ C1

U(J)
(A.6)

Suppose now |kx | \ |zx |, then we can use (A.3) and obtain

qx(kx)−Jk2 \
1
4
k2kx +5

1
4
k2kx − C

k−1

i=1
4 i |u2i | k

2i
x
6−Jk2x

Put GU(z)=
1
4 z

2k−;k−1
i=1 4

i |u2i | z2i. Then it exists RŒ such that GU(z) >
1
5 z

2k

for all |z| > RŒ. Define

C2
U=inf{RŒ > 0: for all |z| \ RŒ GU(z) \

1
5 z

2k} (A.7)

Thus for |kx | \ C2
U we have that GU(kx)−Jk2 \ 1

5k
2
x[k

2k−2
x −5J]. If we

now put

C2
U(J)=˛C

2
U if J [ 1

2C
2k−2
U

2k−2
`5J if J > 1

5C
2k−2
U

(A.8)

we obtain that GU(kx)−Jk2 \ 0 for all |kx | \ C1
U(J), or in other words

qx(kx)−Jk2x \
1
4k

2k
x \ 1

4 z
2k−2
x k2x whenever |kx | > |zx | and |zx | \ C2

U(J)
(A.9)

Collecting together (A.6) and (A.9) and defining

CU=max{C1
U, C

2
U, 1}

CU(J)=˛
CU if J [ 1

5C
2k−2
U

2k−2
`5J if J > 1

5C
2k−2
U

(A.10)
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we get

qx(kx)−Jk2x \
1
4 z

2k−2
x k2x, whenever |zx | \ CU(J) and -kx ¥ R

and (3.5), which is the first part of the lemma, is proved.
Inequality (3.6) follows trivially from (A.2). For |kx | [ |zx | we can use

(A.2) to obtain

qx(kx)=Pk(kx)+C
k−1

i=1
u2iPi(kx) [ 4kz2k−2x k2x+C

k−1

i=1
|u2i | 4 iz

2i−2
x k2x

and for |zx | \ CU(J) \ 1

qx(kx) [ z
2k−2
x k2x 54k+C

k−1

i=1
|u2i | 4 i6 [ BUz

2k−2
x k2x

where

BU=4k+C
k−1

i=1
|u2i | 4 i (A.11)

Proof of part ii). We now consider the case in which |zx | [ CU(J). Then,
using again (A.1)

qx(kx)−Jk2x \ Pk(kx)−{[CU(J)]2k−2 BU+J} k2x \ Pk(kx)−DU(J) k
2
x

where

DU(J)=[CU(J)]2k−2 BU+J=˛ (5BU+1) J if J > 1
5C

2k−2
U

C2k−2
U BU if J [ 1

5C
2k−2
U

(A.12)

Hence, using definition (3.3)

qx(kx)−Jk2x \
1
2k

2k
x +5

1
2
k2kx −[CU(J)]2k−2 4k C

2k−1

j=2
|kx | j−DU(J) k

2
x
6

\ 1
2k

2k
x +g(kx)

where g(t)=1
2 t
2k−[CU(J)]2k−2 4k ;2k−1

j=2 |t| j−DU(J) t2. Clearly g(t) is
bounded below, i.e., we have that

g(t) \ [12 t
2k−EU(J) t2k−1] \ −4k[EU(J)]2k
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where

EU(J)=˛ (5BU+1+2k4k) J if J > 1
5C

2k−2
U

(2k4k+BU) C
2k−2
U +J if J [ 1

5C
2k−2
U

(A.13)

Hence we get

qx(kx)−Jk2x \
1
2k

2k
x −FU(J)

where

FU(J)=4k[EU(J)]2k=˛4
k[(5BU+1+2k4k)]2k J2k if J > 1

5C
2k−2
U

4k[(2k4k+BU) C
2k−2
U +J]2k if J [ 1

5C
2k−2
U

(A.14)

note that FU(J) is increasing proportionally to J2k for J sufficiently large
and is bounded below by a constant greater than 1.

On the other hand, in a completely analogous way, it is simple to show
that qx(kx) [ 2k2kx +FU(J).
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